A Collection of Hopf orders in $K C_{p^{3}}$ in Characteristic p

Robert G. Underwood
Department of Mathematics
Department of Computer Science
Auburn University at Montgomery
Montgomery, Alabama

June 4, 2023

Contents

1. Introduction
2. The Cyclic Case: Hopf orders in $K\left[C_{p^{2}}\right]$
3. The Cyclic Case: Hopf orders in $K\left[C_{p^{3}}\right]$
4. From Characteristic p to characteristic 0
5. From Characteristic 0 to characteristic p
6. What's next: iterated Gauss sums

1. Introduction

Let p be a prime number and let K be a field of characteristic p that is complete with respect to a discrete valuation

$$
\nu: K \rightarrow \mathbb{Z} \cup\{\infty\}
$$

with uniformizing parameter π.
The valuation ring of K is

$$
R=\{x \in K \mid \nu(x) \geq 0\}
$$

with unique maximal ideal

$$
\mathfrak{p}=\{x \in R \mid \nu(x) \geq 1\}
$$

and units

$$
U(R)=\{x \in R \mid \nu(x)=0\} .
$$

Let G denote a finite abstract group.
This talk concerns the construction of Hopf orders in $K[G]$ in the following cases:

1. G is the elementary abelian group of order p^{n},

$$
C_{p}^{n}=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle
$$

$g_{i}^{p}=1,1 \leq i \leq n$,
2. G is the cyclic group of order p^{n},

$$
C_{p^{n}}=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle=\left\langle g_{n}\right\rangle
$$

with $g_{1}^{p}=1, g_{i}^{p}=g_{i-1}, 2 \leq i \leq n$.

Much more is known in the case that G is elementary abelian. In fact, Hopf orders in $K\left[C_{p}^{n}\right]$ have been completely classified for $n=1,2,3$ [TO70], [EU17], [Un22].

Moreover, on the dual side, A . Koch has given a complete classification of Hopf orders in $K\left[C_{p}^{n}\right]^{*}, n \geq 1$ [Ko17].

The situation is less clear in the case that G is cyclic, and aside from the $n=1$ case, the classification is not complete.

A strategy has arisen in view of the progress in the elementary abeilian case: the methods used to construct Hopf orders in $K\left[C_{p}^{n}\right]$ can be adapted to construct collections of Hopf orders in $K\left[C_{p^{n}}\right]$.

We begin with a review of the classification results in the elementary abelian case.

Hopf orders in $K\left[C_{p}^{n}\right], n=1,2,3$

Theorem 1 (Tate-Oort).

Let g_{1} be a chosen generator for C_{p} and let H be an arbitrary R-Hopf order in $K\left[C_{p}\right]$. Then H is of the form

$$
E(i)=R\left[\frac{g_{1}-1}{\pi^{i}}\right]
$$

for some integer $i \geq 0$.
Proof. See [EU17, Theorem 2.3].

To classify Hopf orders in $K\left[C_{p}^{2}\right]$, we need some preliminary notation.

Let $\wp(x)=x^{p}-x$ for $x \in K$.
For x, y, let $x^{[y]}$ denote the truncated exponential, defined as

$$
x^{[y]}=\sum_{m=0}^{p-1}\binom{y}{m}(x-1)^{m}
$$

where $\binom{y}{m}$ is the generalized binomial coefficient

$$
\binom{y}{m}=y(y-1)(y-2) \cdots(y-m+1) / m!
$$

The truncated exponential was introduced by Elder in [EI09].

A classification of R-Hopf orders in $K\left[C_{p}^{2}\right]$ can now be given as follows.

Theorem 2.
Let g_{1}, g_{2} be a chosen basis for C_{p}^{2}, and let H be an arbitrary R-Hopf order in $K\left[C_{p}^{2}\right]$. Then H can be written in the form

$$
E\left(i_{1}, i_{2}, \mu\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right]
$$

for integers $i_{1}, i_{2} \geq 0$, where μ is an element of K that satisfies $\nu(\wp(\mu)) \geq i_{2}-p i_{1}$.

Proof. See [EU17, Section 4].

Extending Theorem 2, this author was able to give a classification in the $n=3$ case.

Theorem 3.

Let g_{1}, g_{2}, g_{3} be a chosen basis for C_{p}^{3} and let H be an arbitrary R-Hopf order in $K\left[C_{p}^{3}\right]$. Then H can be written in the form
$E\left(i_{1}, i_{2}, i_{3}, \mu, \alpha, \beta\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}, \frac{g_{3} g_{1}^{[\alpha]}\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}-1}{\pi^{i_{3}}}\right]$,
for integers $i_{1}, i_{2}, i_{3} \geq 0$, where μ, α, β are elements of K that satisfy $\nu(\wp(\mu)) \geq i_{2}-p i_{1}, \nu(\wp(\alpha)+\wp(\mu) \beta) \geq i_{3}-p i_{1}$ and $\nu(\wp(\beta)) \geq i_{3}-p i_{2}$.

Proof. See [Un22, Proposition 5.4]. Note: Hopf orders of this type first appeared in a paper of Byott and Elder [BE18].

2. The Cyclic case: Hopf orders in $K\left[C_{p^{2}}\right]$

Now, we consider the cyclic cases.
Note: The $n=1$ case has already been covered:

The cyclic group $C_{p}=\left\langle g_{1}\right\rangle$ coincides with the elementary abelian group $C_{p}=\left\langle g_{1}\right\rangle$.

As shown in Theorem 1, every Hopf order in $K\left[C_{p}\right]$ is a Tate/Oort Hopf order, which we now write as

$$
A\left(i_{1}\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}\right],
$$

for some integer $i_{1} \geq 0$.

We consider the cyclic $n=2$ case: the construction of Hopf orders in $K\left[C_{p^{2}}\right]$.

For $n=2$, the strategy, as mentioned, is to convert the Hopf order in $K\left[C_{p}^{2}\right]$ to a Hopf order in $K\left[C_{p^{2}}\right]$.

We replace the elementary abelian group of order p^{2},

$$
C_{p}^{2}=\left\langle g_{1}, g_{2}\right\rangle, \quad g_{1}^{p}=1, g_{2}^{p}=1
$$

with the cyclic group of order p^{2},

$$
C_{p^{2}}=\left\langle g_{1}, g_{2}\right\rangle=\left\langle g_{2}\right\rangle, \quad g_{1}^{p}=1, g_{2}^{p}=g_{1} .
$$

Let $C_{p^{2}}=\left\langle g_{1}, g_{2}\right\rangle=\left\langle g_{2}\right\rangle$ denote the cyclic group of order p^{2}; $g_{1}^{p}=1, g_{2}^{p}=g_{1}$.

Let $i_{1}, i_{2} \geq 0$ be integers and let μ be an element of K. Let

$$
A\left(i_{1}, i_{2}, \mu\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right]
$$

be a truncated exponential algebra over R.
We find conditions under which $A\left(i_{1}, i_{2}, \mu\right)$ is an R-Hopf order in $K\left[C_{p^{2}}\right]$.

Proposition 4.

Suppose that $\nu(\wp(\mu)) \geq i_{2}-p i_{1}$ and $i_{1} \geq p i_{2}$. Then $A\left(i_{1}, i_{2}, \mu\right)$ is an R-order in $K\left[C_{p^{2}}\right]$.

Proof. Since

$$
\left(\frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right)^{p}=\frac{g_{1}-1}{\pi^{p i_{2}}} \in A\left(i_{1}\right)
$$

an R-basis for $A\left(i_{1}, i_{2}, \mu\right)$ is

$$
\left\{\left(\frac{g_{1}-1}{\pi^{i_{1}}}\right)^{a}\left(\frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right)^{b}\right\}, \quad 0 \leq a, b \leq p-1
$$

Moreover, as shown in [EU17, Proposition 3.4], $g_{1}^{[\mu]}$ is a unit in A(i_{1}).

Thus,

$$
K \otimes_{R} A\left(i_{1}, i_{2}, \mu\right) \cong K\left[C_{p^{2}}\right],
$$

which shows that $A\left(i_{1}, i_{2}, \mu\right)$ is an R-order in $K\left[C_{p^{2}}\right]$.

Proposition 5.

Suppose that $\nu(\wp(\mu)) \geq i_{2}-p i_{1}$ and $i_{1} \geq p i_{2}$. Then $A\left(i_{1}, i_{2}, \mu\right)$ is an R-Hopf order in $K\left[C_{p^{2}}\right]$.

Proof. In view of Proposition 4, we only need to check that the Hopf maps of $K\left[C_{p^{2}}\right]$ restricted to $A\left(i_{1}, i_{2}, \mu\right)$, endow $A\left(i_{1}, i_{2}, \mu\right)$ with the structure of an R-Hopf algebra.

But we easily have $\varepsilon\left(A\left(i_{1}, i_{2}, \mu\right)\right) \subseteq R$. Moreover,

$$
\Delta\left(A\left(i_{1}, i_{2}, \mu\right)\right) \subseteq A\left(i_{1}, i_{2}, \mu\right) \otimes A\left(i_{1}, i_{2}, \mu\right)
$$

follow precisely as in the elementary abelian case, see [EU17, Proposition 3.4].

Finally, $S\left(A\left(i_{1}, i_{2}, \mu\right)\right) \subseteq A\left(i_{1}, i_{2}, \mu\right)$ since the coinverse map is $m(I \otimes m)(I \otimes I \otimes m) \cdots\left(I^{p^{2}-3} \otimes m\right)\left(I^{p^{2}-3} \otimes \Delta\right) \cdots(I \otimes I \otimes \Delta)(I \otimes \Delta) \Delta$, where $m: A\left(i_{1}, i_{2}, \mu\right) \otimes A\left(i_{1}, i_{2}, \mu\right) \rightarrow A\left(i_{1}, i_{2}, \mu\right)$ denotes multiplication in $A\left(i_{1}, i_{2}, \mu\right)$.

3. The Cyclic case: Hopf orders in $K\left[C_{p^{3}}\right]$

Let $C_{p^{3}}=\left\langle g_{1}, g_{2}, g_{3}\right\rangle=\left\langle g_{3}\right\rangle$ denote the cyclic group of order p^{3}; $g_{1}^{p}=1, g_{2}^{p}=g_{1}, g_{3}^{p}=g_{2}$.

Let $i_{1}, i_{2}, i_{3} \geq 0$ be integers with $i_{1} \geq p i_{2}$. Let μ be an element of K that satisfies $\nu(\wp(\mu)) \geq i_{2}-p i_{1}$. Let α, β be elements of K, and let $A=A\left(i_{1}, i_{2}, i_{3}, \alpha, \beta, \mu\right)=$

$$
R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}, \frac{g_{3} g_{1}^{[\alpha]}\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}-1}{\pi^{i_{3}}}\right]
$$

be a truncated exponential algebra over R.

By Proposition 5,

$$
A\left(i_{1}, i_{2}, \mu\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right] .
$$

is an R-Hopf order in $K\left[C_{p^{2}}\right]$.
We also note that $A\left(i_{1}, i_{2}, \mu\right)$ is a local ring [Ch00, (29.1) Proposition], [Ch00, (21.3) Corollary].

We want to find conditions so that A is an R-Hopf order in $K\left[C_{p^{3}}\right]$.

Lemma 6.

Assume the conditions $\nu(\wp(\alpha)+\wp(\mu) \beta) \geq i_{3}-p i_{1}$, $\nu(\wp(\beta)) \geq i_{3}-p i_{2}$. Then $g_{1}^{[\alpha]}\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}$ is a unit in $A\left(i_{1}, i_{2}, \mu\right)$.

Proof. By [EU17, (2)], $g_{1}^{[\alpha]} g_{1}^{[-\alpha]}=1$. As shown in [Un22, Lemma 4.2], $g_{1}^{[\pm \alpha]} \in A\left(i_{1}, i_{2}, \mu\right)$. Thus $g_{1}^{[\alpha]}$ is a unit in $A\left(i_{1}, i_{2}, \mu\right)$.

By [EU17, (2)],

$$
\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}\left(g_{2} g_{1}^{[\mu]}\right)^{[-\beta]}=1+f\left(g_{2} g_{1}^{[\mu]}-1, \beta\right)\left(g_{1}-1\right)
$$

for some polynomial $f(x, y) \in \mathbb{F}_{p}[x, y]$.
Now the condition $\nu(\wp(\beta)) \geq i_{3}-p i_{2}$ yields $\nu(\beta) \geq-i_{2}$, which implies that

$$
f\left(g_{2} g_{1}^{[\mu]}-1, \beta\right)\left(g_{1}-1\right) \in A\left(i_{1}, i_{2}, \mu\right)
$$

In fact,

$$
f\left(g_{2} g_{1}^{[\mu]}-1, \beta\right)\left(g_{1}-1\right) \in \operatorname{ker}(\varepsilon)
$$

Thus $f\left(g_{2} g_{1}^{[\mu]}-1, \beta\right)\left(g_{1}-1\right)$ is contained in the unique maximal ideal of $A\left(i_{1}, i_{2}, \mu\right)$.

And so, $1+f\left(g_{2} g_{1}^{[\mu]}-1, \beta\right)\left(g_{1}-1\right)$ is a unit of $A\left(i_{1}, i_{2}, \mu\right)$.
Let c denote its inverse. Then

$$
\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}\left(g_{2} g_{1}^{[\mu]}\right)^{[-\beta]} c=1
$$

Using the method of [Un22, Lemma 4.2], we obtain $\left(g_{2} g_{1}^{[\mu]}\right)^{[\pm \beta]} \in A\left(i_{1}, i_{2}, \mu\right)$. So, $\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}$ is unit in $A\left(i_{1}, i_{2}, \mu\right)$.

Proposition 7.

Let $i_{1}, i_{2}, i_{3} \geq 0$ be integers, let $\mu, \alpha, \beta \in K$. Assume the conditions $i_{1} \geq p i_{2}, \nu(\wp(\mu)) \geq i_{2}-p i_{1}, \nu(\wp(\alpha)+\wp(\mu) \beta) \geq i_{3}-p i_{1}$, $\nu(\wp(\beta)) \geq i_{3}-p i_{2}, \nu\left(\mu-\beta^{p}\right) \geq p i_{3}-i_{1}$ and $i_{2} \geq p i_{3}$. Then $A=A\left(i_{1}, i_{2}, i_{3}, \mu, \alpha, \beta\right)$ is an R-order in $K\left[C_{p^{3}}\right]$.

Proof. We have

$$
\left(\frac{g_{3} g_{1}^{[\alpha]}\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}-1}{\pi^{i 3}}\right)^{p}=\frac{g_{2} g_{1}^{\left[\beta^{p}\right]}-1}{\pi^{p i_{3}}}
$$

By [EU17, Proposition 2.2], the condition $\nu\left(\mu-\beta^{p}\right) \geq p i_{3}-i_{1}$ implies that

$$
\frac{g_{1}^{[\mu]}-g_{1}^{\left[\beta^{p}\right]}}{\pi^{p i_{3}}} \in A\left(i_{1}\right) .
$$

Ultimately, we obtain

$$
\frac{g_{2} g_{1}^{\left[\beta^{p}\right]}-1}{\pi^{p i_{3}}} \in A\left(i_{1}, i_{2}, \mu\right)
$$

since $i_{2} \geq p i_{3}$.

Thus an R-basis for $A\left(i_{1}, i_{2}, i_{3}, \mu, \alpha, \beta\right)$ is

$$
\begin{aligned}
& \quad\left\{\left(\frac{g_{1}-1}{\pi^{i_{1}}}\right)^{a}\left(\frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right)^{b}\left(\frac{g_{3} g_{1}^{[\alpha]}\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}-1}{\pi^{i_{3}}}\right)^{c}\right\}, \\
& 0 \leq a, b, c \leq p-1 .
\end{aligned}
$$

By Lemma 6, $g_{1}^{[\alpha]}\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}$ is a unit in $A\left(i_{1}, i_{2}, \mu\right)$.
Thus,

$$
K \otimes_{R} A\left(i_{1}, i_{2}, i_{3}, \mu, \alpha, \beta\right) \cong K\left[C_{p^{3}}\right],
$$

which shows that $A\left(i_{1}, i_{2}, i_{3}, \mu, \alpha, \beta\right)$ is an R-order in $K\left[C_{p^{3}}\right]$.

Proposition 8.

Let $i_{1}, i_{2}, i_{3} \geq 0$ be integers, let $\mu, \alpha, \beta \in K$. Assume the conditions $i_{1} \geq p i_{2}, \nu(\wp(\mu)) \geq i_{2}-p i_{1}, \nu(\wp(\alpha)+\wp(\mu) \beta) \geq i_{3}-p i_{1}$, $\nu(\wp(\beta)) \geq i_{3}-p i_{2}, \nu\left(\mu-\beta^{p}\right) \geq p i_{3}-i_{1}$ and $i_{2} \geq$ pi3. Then $A=A\left(i_{1}, i_{2}, i_{3}, \mu, \alpha, \beta\right)$ is an R-Hopf order in $K\left[C_{p^{3}}\right]$.

Proof. In view of Proposition 7, we only need to check that the Hopf maps of $K\left[C_{p^{3}}\right]$ restricted to A, endow A with the structure of an R-Hopf algebra.

We easily have $\varepsilon(A) \subseteq R$.
We have to work a bit harder to show that

$$
\Delta(A) \subseteq A \otimes A
$$

Let

$$
Q(x, y)=\left((x+y+x y)^{p}-x^{p}-y^{p}-(x y)^{p}\right) / p .
$$

Then $Q(x, y) \in(x, y)^{p} \subseteq \mathbb{Z}[x, y]$ with $Q(x, y)^{2} \in\left(x^{p}, y^{p}\right)$.
Let

$$
\begin{gathered}
X=\left(g_{1}-1\right) / \pi^{i_{1}} \otimes 1, \quad Y=1 \otimes\left(g_{1}-1\right) / \pi^{i_{1}} \\
T=\left(g_{2}-1\right) \otimes 1, \quad V=1 \otimes\left(g_{2}-1\right)
\end{gathered}
$$

Let

$$
D=(1+T)(1+V)\left(1+\pi^{i_{1}} X\right)^{[\mu]}\left(1+\pi^{i_{1}} Y\right)^{[\mu]}
$$

By [Un22, Lemma 4.3]

$$
\begin{aligned}
&\left((1+T)(1+V)\left(\left(1+\pi^{i_{1}} X\right)\left(1+\pi^{i_{1}} Y\right)\right)^{[\mu]}\right)^{[\beta]} \\
&=\left((1+T)(1+V)\left(1+\pi^{i_{1}} X\right)^{[\mu]}\left(1+\pi^{i_{1}} Y\right)^{[\mu]}\right)^{[\beta]} \\
& \cdot\left(1+\wp(\mu) \beta Q\left(\pi^{i_{1}} X, \pi^{i_{1}} Y\right)\right) \\
& \cdot\left(1+\wp(\beta) Q\left(D-1, \wp(\mu) Q\left(\pi^{i_{1}} X, \pi^{i_{1}} Y\right)\right)\right) \\
&+f\left(\pi^{i_{1}} X, \pi^{i_{1}} Y, T, V, \mu, \alpha\right) \pi^{i_{1}} X+g\left(\pi^{i_{1}} X, \pi^{i_{1}} Y, T, V, \mu, \alpha\right) \pi^{i_{1}} Y
\end{aligned}
$$ for polynomials $f, g \in \mathbb{F}_{p}[X, Y, T, V, \mu, \beta]$.

We have
$+f\left(\pi^{i_{1}} X, \pi^{i_{1}} Y, T, V, \mu, \alpha\right) \pi^{i_{1}} X+g\left(\pi^{i_{1}} X, \pi^{i_{1}} Y, T, V, \mu, \alpha\right) \pi^{i_{1}} Y$ $\in \pi^{i_{3}}\left(A\left(i_{1}, i_{2}, \mu\right) \otimes A\left(i_{1}, i_{2}, \mu\right)\right)$.

Ultimately, we obtain

$$
\Delta\left(g_{3} g_{1}^{[\alpha]}\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}-1\right) \in \pi^{i_{3}} A \otimes A
$$

Thus

$$
\Delta(A) \subseteq A \otimes A
$$

Finally, $S(A) \subseteq A$ since the coinverse map is
$m(I \otimes m)(I \otimes I \otimes m) \cdots\left(I^{p^{3}-3} \otimes m\right)\left(I^{p^{3}-3} \otimes \Delta\right) \cdots(I \otimes I \otimes \Delta)(I \otimes \Delta) \Delta$,
where $m: A \otimes A \rightarrow A$ is multiplication in $A\left(i_{1}, i_{2}, \mu\right)$.

4. From Characteristic p to characteristic 0

Let p be a prime number, let K be a field of characteristic p that is complete with respect to a discrete valuation

$$
\nu: K \rightarrow \mathbb{Z} \cup\{\infty\}
$$

Let R denote the valuation ring with π the uniformizing parameter.
Let $C_{p}=\left\langle g_{1}\right\rangle$ denote the cyclic group of order p.
Let $i_{1} \geq 0$ be an integer. Then

$$
A\left(i_{1}\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}\right]
$$

is an R-Hopf order in $K\left[C_{p}\right]$.

Proposition 9.

Let $i_{1} \geq 0$ be the integer as before. Let \mathbb{Q}_{p} denote the field of p-adic rationals. Then there exists a finite field extension L / \mathbb{Q}_{p} with valuation ring \mathcal{O}_{L} and uniformizing parameter λ, for which

$$
A\left(i_{1}\right)=\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{i_{1}}}\right]
$$

is an \mathcal{O}_{L}-Hopf order in $L\left[C_{p}\right]$.

Proof. Choose $r \geq 1$ so that

$$
p^{r-1} \geq i_{1} \geq 0
$$

and let $L=\mathbb{Q}_{p}\left(\zeta_{p^{r}}\right), \lambda=\zeta_{p^{r}}-1$,
Then $\nu(p)=e=p^{r-1}(p-1), \nu\left(\zeta_{p}-1\right)=e^{\prime}=e /(p-1)=p^{r-1}$.
Thus $A\left(i_{1}\right)$ is a (characteristic 0$) \mathcal{O}_{L}$-Hopf order in $L\left[C_{p}\right]$.

Next, let $i_{1}, i_{2} \geq 0$ be integers with $i_{1} \geq p i_{2}$. Assume that $p \mid i_{2}$.
Let $t \geq 0$ be so that

$$
0 \geq t+i_{2} / p-i_{1}
$$

Let

$$
\mu=\pi^{t+i_{2} / p-i_{1}} \in K .
$$

Then $\nu(\wp(\mu)) \geq i_{2}-p i_{1}$.

Let $C_{p^{2}}=\left\langle g_{1}, g_{2}\right\rangle, g_{1}^{p}=1, g_{2}^{p}=g_{1}$ denote the cyclic group of order p^{2}.

By Proposition 5

$$
A\left(i_{1}, i_{2}, \mu\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right]
$$

is an R-Hopf order in $K\left[C_{p^{2}}\right]$.

Now, let $r \geq 1$ be so that

$$
p^{r-1} \geq i_{1}+i_{2}
$$

Let $L=\mathbb{Q}_{p}\left(\zeta_{p^{r}}\right)$, with valuation ring \mathcal{O}_{L} and uniformizing parameter $\lambda=\zeta_{p^{r}}-1$.

Let

$$
\alpha=\lambda^{t+i_{2} / p-i_{1}} \in L .
$$

Proposition 10.

$$
A\left(i_{1}, i_{2}, \alpha\right)=\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{i_{1}}}, \frac{g_{2} g_{1}^{[\alpha]}-1}{\lambda^{i_{2}}}\right]
$$

is an \mathcal{O}_{L}-Hopf order in $L\left[C_{p^{2}}\right]$.

Proof. Let

$$
u=\zeta_{p}^{[\alpha]}=\sum_{m=0}^{p-1}\binom{\alpha}{m}\left(\zeta_{p}-1\right)^{m} .
$$

Then

$$
\nu(1-u) \geq p^{r-1}+\nu(\alpha) \geq i_{1}^{\prime}+i_{2} / p,
$$

$i_{1}^{\prime}=p^{r-1}-i_{1}$.
Since $p^{r-1} \geq i_{1}+i_{2}$,

$$
i_{1}^{\prime}+i_{2} / p \geq i_{1}^{\prime} / p+i_{2}
$$

So, by a well-known result,

$$
\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{i_{1}}}, \frac{g_{2} a_{u}-1}{\lambda^{i_{2}}}\right] .
$$

is an \mathcal{O}_{L}-Hopf order in $L\left[C_{p^{2}}\right]$.
Here, $a_{u}=\sum_{m=0}^{p-1} u^{m} e_{m}$ is the familiar Greither quantity.
Now by a "translation" result of Elder and U. [EU23],

$$
\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{i_{1}}}, \frac{g_{2} g_{1}^{[\alpha]}-1}{\lambda^{i_{2}}}\right]=\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{i_{1}}}, \frac{g_{2} a_{u}-1}{\lambda^{i_{2}}}\right]
$$

Note: We can write a_{u} as

$$
a_{u}=G\left(g_{1}, u\right)
$$

where

$$
G(x, y)=\frac{1}{p} \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} \zeta_{p}^{-m n} x^{m} y^{n}
$$

is the Gauss sum.

5: From Characteristic 0 to characteristic p

Let L be a finite field extension of \mathbb{Q}_{p}. Assume that $\zeta_{p^{3}} \in L$.
We have the following result from [Un08, Theorem 3.2]:

Theorem 11 (U).

Let $i_{1}, i_{2}, i_{3} \geq 0$ be integers and let u, v, w be units of \mathcal{O}_{L}.
Suppose that
(i) $\nu(1-u) \geq i_{1}^{\prime}+i_{2} / p$
(ii) $\nu(1-w) \geq i_{2}^{\prime}+i_{3} / p$
(iii) $\nu\left(v^{p}-G\left(u^{-p}, w\right)\right) \geq p i_{1}^{\prime}+i_{3}$,
(iv) $\nu(1-v) \geq i_{1}^{\prime}+\left(i_{3} / p^{2}\right)$,
(v) $i_{1} \geq p i_{2}$,
(vi) $i_{2}^{\prime}>p i_{1}^{\prime}$,
(vii) $i_{3}^{\prime} \geq p^{2} i_{1}^{\prime}$,
(viii) $i_{2} \geq p^{2} i_{3}$,
(ix) $e^{\prime} \geq i_{1}+i_{2}+i_{3}$.

Then

$$
\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{i_{1}}}, \frac{g_{2} G\left(g_{1}, u\right)-1}{\lambda^{i_{2}}}, \frac{g_{3} G\left(g_{1}, v\right) G\left(g_{2} G\left(g_{1}, u\right), w\right)-1}{\lambda^{i_{3}}}\right]
$$

is an (iterated Gauss sum) $\mathcal{O}_{L^{-}}$Hopf order in $L\left[C_{p^{3}}\right]$.

Let

$$
\begin{gathered}
\mu=\frac{1}{1-\zeta_{p}} \sum_{m=1}^{p-1} \frac{(1-u)^{m}}{m}, \quad \beta=\frac{1}{1-\zeta_{p}} \sum_{m=1}^{p-1} \frac{(1-w)^{m}}{m} \\
\alpha=\frac{1}{1-\zeta_{p}} \sum_{m=1}^{p-1} \frac{(1-v)^{m}}{m}
\end{gathered}
$$

Note: these quantities are truncated logarithms.
Then conditions (i)-(ix) yield the conditions:
$\nu(\wp(\mu)) \geq i_{2}-p i_{1}$,
$\nu(\wp(\beta)) \geq i_{3}-p i_{2}$,
$\nu(\wp(\alpha)+\wp(\mu) \beta) \geq i_{3}-p i_{1}$,
$\nu\left(\mu-\beta^{p}\right) \geq p i_{3}-i_{1}$.

Thus by Proposition 8,

$$
R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{\left[\mu^{\prime}\right]}-1}{\pi^{i_{2}}}, \frac{g_{3} g_{1}^{\left[\alpha^{\prime}\right]}\left(g_{2} g_{1}^{\left[\mu^{\prime}\right]}\right)^{\left[\beta^{\prime}\right]}-1}{\pi^{i_{3}}}\right]
$$

is an R-Hopf order in $K\left[C_{p^{3}}\right]$. where $\mu^{\prime}, \beta^{\prime}, \alpha^{\prime}$ are appropriately chosen elements in K. (K has characteristic p.)

Characteristic 0 is special

Let $L=\mathbb{Q}_{p}\left(\zeta_{p^{2}}\right), G=C_{p^{2}}$.
Then the dual of the Hopf order $\mathcal{O}_{L}\left[C_{\rho^{2}}\right]$ is the \mathcal{O}_{L}-Hopf order in $L\left[C_{p^{2}}\right]$ of the form

$$
\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{\prime}}, \frac{g_{2} a_{w}-1}{\lambda^{e^{\prime}}}\right]
$$

with $w=\zeta_{p^{2}}^{-1}, e^{\prime}=\nu(p) /(p-1)=p[U C 06$, Theorem 1.2].
Let

$$
\omega=\frac{1}{1-\zeta_{p}} \sum_{m=1}^{p-1} \frac{(1-w)^{m}}{m} .
$$

Then

$$
\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{e^{\prime}}}, \frac{g_{2} a_{w}-1}{\lambda^{e^{\prime}}}\right]=\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{e^{\prime}}}, \frac{g_{2} g_{1}^{[\omega]}-1}{\lambda^{e^{\prime}}}\right]
$$

Yet

$$
\mathcal{O}_{L}\left[\frac{g_{1}-1}{\lambda^{e^{\prime}}}, \frac{g_{2} g_{1}^{[\omega]}-1}{\lambda^{e^{\prime}}}\right]
$$

cannot correspond to a Hopf algebra in characteristic p since $p e^{\prime} \not \leq e^{\prime}$.

6: What's next: iterated Gauss sums

The plan is to recast the results of [Un08] using the methods of [EU17] and [Un22], adapted to characteristic 0 .

From [Ch00, Proposition (31.10)], we have

Proposition 12 (Childs).

Suppose $p i_{1} \geq i_{2}$, let $u \in U\left(\mathcal{O}_{L}\right)$ with $\nu\left(u^{p}-1\right) \geq p i_{1}^{\prime}+i_{2}$. Then

$$
\Delta\left(G\left(g_{1}, u\right)\right)=G\left(g_{1} \otimes g_{1}, u\right) \equiv G\left(g_{1}, u\right) \otimes G\left(g_{1}, u\right)
$$

modulo $\lambda^{i_{2}} A\left(i_{1}\right) \otimes A\left(i_{1}\right)$.

Childs' result can be generalized to iterated Gauss sums.

Proposition 13.
Let $u, w \in U\left(\mathcal{O}_{L}\right)$ with $\nu\left(G\left(u^{p}, w\right)-1\right) \geq p i_{1}^{\prime}+i_{3}$. Then
$\Delta\left(G\left(g_{2} G\left(g_{1}, u\right), w\right)\right)$
$=G\left(\left(g_{2} \otimes g_{2}\right) G\left(g_{1} \otimes g_{1}, u\right), w\right) \equiv G\left(g_{2} G\left(g_{1}, u\right) \otimes g_{2} G\left(g_{1}, u\right), w\right)$
modulo $\lambda^{i_{3}} A\left(i_{1}, i_{2}, u\right) \otimes A\left(i_{1}, i_{2}, u\right)$.

Proposition 13 is the first step in a simplified construction of iterated Gauss sum Hopf orders in $K\left[C_{p^{3}}\right]$.

References

[BE18] N. Byott, G. G. Elder, Sufficient conditions for large Galois scaffolds, J. Num. Theory, 182, 2018, 95-130.
[Ch00] L. N. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, American Mathematical Society, Mathematical Surveys and Monographs 80, 2000.
[EIOT] G. G. Elder, Galois scaffolding in one-dimensional elementary abelian extensions, Proc. Amer. Math. Soc., 137(4), (2009), 1193-1203.

图 [EU17] G. G. Elder, R. G. Underwood, Finite group scheme extensions, and Hopf orders in $K C_{p}^{2}$ over a characteristic p discrete valuation ring, New York J. Math., 23, 2017, 11-39.
(EU23] G. G. Elder, R. G. Underwood, personal communication.
[[Ko17] A. Koch, Primitively generated Hopf orders in characteristic p, Comm. Alg., 45(6), 2017, 2673-2689.
［TO70］J．Tate，F．Oort，Group schemes of prime order，Ann． Sci．Ec．Norm．Sup．，3，（1970），1－21．
圊［UC06］R．G．Underwood，L．N．Childs，Duality for Hopf orders，Trans．Amer．Math．Soc．，358（3），（2006），1117－1163．
䍰［Un08］R．G．Underwood，Realizable Hopf orders in $K C_{p^{3}}$ ，J． Algebra，319，（2008），4426－4455．

目［Un22］R．Underwood，Hopf orders in $K\left[C_{p}^{3}\right]$ in characteristic p，J．Algebra，595，（2022），523－550．

