
A Collection of Hopf orders in KCp3

in Characteristic p

Robert G. Underwood
Department of Mathematics

Department of Computer Science
Auburn University at Montgomery

Montgomery, Alabama

June 4, 2023

1 / 44



Contents

1. Introduction

2. The Cyclic Case: Hopf orders in K [Cp2]

3. The Cyclic Case: Hopf orders in K [Cp3]

4. From Characteristic p to characteristic 0

5. From Characteristic 0 to characteristic p

6. What’s next: iterated Gauss sums

2 / 44



1. Introduction

Let p be a prime number and let K be a field of characteristic p
that is complete with respect to a discrete valuation

ν : K → Z ∪ {∞}

with uniformizing parameter π.

The valuation ring of K is

R = {x ∈ K | ν(x) ≥ 0}

with unique maximal ideal

p = {x ∈ R | ν(x) ≥ 1}

and units
U(R) = {x ∈ R | ν(x) = 0}.
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Let G denote a finite abstract group.

This talk concerns the construction of Hopf orders in K [G ] in the
following cases:

1. G is the elementary abelian group of order pn,

Cn
p = 〈g1, g2, . . . , gn〉,

gp
i = 1, 1 ≤ i ≤ n,

2. G is the cyclic group of order pn,

Cpn = 〈g1, g2, . . . , gn〉 = 〈gn〉

with gp
1 = 1, gp

i = gi−1, 2 ≤ i ≤ n.
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Much more is known in the case that G is elementary abelian. In
fact, Hopf orders in K [Cn

p ] have been completely classified for
n = 1, 2, 3 [TO70], [EU17], [Un22].

Moreover, on the dual side, A. Koch has given a complete
classification of Hopf orders in K [Cn

p ]∗, n ≥ 1 [Ko17].

The situation is less clear in the case that G is cyclic, and aside
from the n = 1 case, the classification is not complete.

A strategy has arisen in view of the progress in the elementary
abeilian case: the methods used to construct Hopf orders in K [Cn

p ]
can be adapted to construct collections of Hopf orders in K [Cpn ].

We begin with a review of the classification results in the
elementary abelian case.
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Hopf orders in K [C n
p ], n = 1, 2, 3

Theorem 1 (Tate-Oort).

Let g1 be a chosen generator for Cp and let H be an arbitrary
R-Hopf order in K [Cp]. Then H is of the form

E (i) = R

[
g1 − 1

πi

]
for some integer i ≥ 0.

Proof. See [EU17, Theorem 2.3].
�
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To classify Hopf orders in K [C 2
p ], we need some preliminary

notation.

Let ℘(x) = xp − x for x ∈ K .

For x , y , let x [y ] denote the truncated exponential, defined as

x [y ] =

p−1∑
m=0

(
y

m

)
(x − 1)m,

where
(y
m

)
is the generalized binomial coefficient(
y

m

)
= y(y − 1)(y − 2) · · · (y −m + 1)/m!

The truncated exponential was introduced by Elder in [El09].

7 / 44



A classification of R-Hopf orders in K [C 2
p ] can now be given as

follows.

Theorem 2.
Let g1, g2 be a chosen basis for C 2

p , and let H be an arbitrary
R-Hopf order in K [C 2

p ]. Then H can be written in the form

E (i1, i2, µ) = R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
.

for integers i1, i2 ≥ 0, where µ is an element of K that satisfies
ν(℘(µ)) ≥ i2 − pi1.

Proof. See [EU17, Section 4].
�
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Extending Theorem 2, this author was able to give a classification
in the n = 3 case.

Theorem 3.
Let g1, g2, g3 be a chosen basis for C 3

p and let H be an arbitrary
R-Hopf order in K [C 3

p ]. Then H can be written in the form

E (i1, i2, i3, µ, α, β) = R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2
,
g3g

[α]
1 (g2g

[µ]
1 )[β] − 1

πi3

]
,

for integers i1, i2, i3 ≥ 0, where µ, α, β are elements of K that
satisfy ν(℘(µ)) ≥ i2 − pi1, ν(℘(α) + ℘(µ)β) ≥ i3 − pi1 and
ν(℘(β)) ≥ i3 − pi2.

Proof. See [Un22, Proposition 5.4]. Note: Hopf orders of this
type first appeared in a paper of Byott and Elder [BE18].

�
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2. The Cyclic case: Hopf orders in K [Cp2]

Now, we consider the cyclic cases.

Note: The n = 1 case has already been covered:

The cyclic group Cp = 〈g1〉 coincides with the elementary abelian
group Cp = 〈g1〉.

As shown in Theorem 1, every Hopf order in K [Cp] is a Tate/Oort
Hopf order, which we now write as

A(i1) = R

[
g1 − 1

πi1

]
,

for some integer i1 ≥ 0.
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We consider the cyclic n = 2 case: the construction of Hopf orders
in K [Cp2 ].

For n = 2, the strategy, as mentioned, is to convert the Hopf order
in K [C 2

p ] to a Hopf order in K [Cp2 ].

We replace the elementary abelian group of order p2,

C 2
p = 〈g1, g2〉, gp

1 = 1, gp
2 = 1,

with the cyclic group of order p2,

Cp2 = 〈g1, g2〉 = 〈g2〉, gp
1 = 1, gp

2 = g1.
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Let Cp2 = 〈g1, g2〉 = 〈g2〉 denote the cyclic group of order p2;
gp
1 = 1, gp

2 = g1.

Let i1, i2 ≥ 0 be integers and let µ be an element of K . Let

A(i1, i2, µ) = R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
be a truncated exponential algebra over R.

We find conditions under which A(i1, i2, µ) is an R-Hopf order in
K [Cp2 ].
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Proposition 4.

Suppose that ν(℘(µ)) ≥ i2 − pi1 and i1 ≥ pi2. Then A(i1, i2, µ) is
an R-order in K [Cp2 ].

Proof. Since (
g2g

[µ]
1 − 1

πi2

)p

=
g1 − 1

πpi2
∈ A(i1),

an R-basis for A(i1, i2, µ) is
(
g1 − 1

πi1

)a
(
g2g

[µ]
1 − 1

πi2

)b
 , 0 ≤ a, b ≤ p − 1.

Moreover, as shown in [EU17, Proposition 3.4], g
[µ]
1 is a unit in

A(i1).
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Thus,

K ⊗R A(i1, i2, µ) ∼= K [Cp2 ],

which shows that A(i1, i2, µ) is an R-order in K [Cp2 ].
�
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Proposition 5.

Suppose that ν(℘(µ)) ≥ i2 − pi1 and i1 ≥ pi2. Then A(i1, i2, µ) is
an R-Hopf order in K [Cp2 ].

Proof. In view of Proposition 4, we only need to check that the
Hopf maps of K [Cp2 ] restricted to A(i1, i2, µ), endow A(i1, i2, µ)
with the structure of an R-Hopf algebra.

But we easily have ε(A(i1, i2, µ)) ⊆ R. Moreover,

∆(A(i1, i2, µ)) ⊆ A(i1, i2, µ)⊗ A(i1, i2, µ)

follow precisely as in the elementary abelian case, see [EU17,
Proposition 3.4].
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Finally, S(A(i1, i2, µ)) ⊆ A(i1, i2, µ) since the coinverse map is

m(I⊗m)(I⊗I⊗m) · · · (I p2−3⊗m)(I p
2−3⊗∆) · · · (I⊗I⊗∆)(I⊗∆)∆,

where m : A(i1, i2, µ)⊗ A(i1, i2, µ)→ A(i1, i2, µ) denotes
multiplication in A(i1, i2, µ).

�
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3. The Cyclic case: Hopf orders in K [Cp3]

Let Cp3 = 〈g1, g2, g3〉 = 〈g3〉 denote the cyclic group of order p3;
gp
1 = 1, gp

2 = g1, gp
3 = g2.

Let i1, i2, i3 ≥ 0 be integers with i1 ≥ pi2. Let µ be an element of
K that satisfies ν(℘(µ)) ≥ i2 − pi1. Let α, β be elements of K ,
and let A = A(i1, i2, i3, α, β, µ) =

R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2
,
g3g

[α]
1 (g2g

[µ]
1 )[β] − 1

πi3

]
be a truncated exponential algebra over R.
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By Proposition 5,

A(i1, i2, µ) = R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
.

is an R-Hopf order in K [Cp2 ].

We also note that A(i1, i2, µ) is a local ring [Ch00, (29.1)
Proposition], [Ch00, (21.3) Corollary].
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We want to find conditions so that A is an R-Hopf order in K [Cp3 ].

Lemma 6.
Assume the conditions ν(℘(α) + ℘(µ)β) ≥ i3 − pi1,

ν(℘(β)) ≥ i3 − pi2. Then g
[α]
1 (g2g

[µ]
1 )[β] is a unit in A(i1, i2, µ).
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Proof. By [EU17, (2)], g
[α]
1 g

[−α]
1 = 1. As shown in [Un22, Lemma

4.2], g
[±α]
1 ∈ A(i1, i2, µ). Thus g

[α]
1 is a unit in A(i1, i2, µ).

By [EU17, (2)],

(g2g
[µ]
1 )[β](g2g

[µ]
1 )[−β] = 1 + f (g2g

[µ]
1 − 1, β)(g1 − 1),

for some polynomial f (x , y) ∈ Fp[x , y ].

Now the condition ν(℘(β)) ≥ i3 − pi2 yields ν(β) ≥ −i2, which
implies that

f (g2g
[µ]
1 − 1, β)(g1 − 1) ∈ A(i1, i2, µ).

In fact,
f (g2g

[µ]
1 − 1, β)(g1 − 1) ∈ ker(ε).
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Thus f (g2g
[µ]
1 − 1, β)(g1 − 1) is contained in the unique maximal

ideal of A(i1, i2, µ).

And so, 1 + f (g2g
[µ]
1 − 1, β)(g1 − 1) is a unit of A(i1, i2, µ).

Let c denote its inverse. Then

(g2g
[µ]
1 )[β](g2g

[µ]
1 )[−β]c = 1.

Using the method of [Un22, Lemma 4.2], we obtain

(g2g
[µ]
1 )[±β] ∈ A(i1, i2, µ). So, (g2g

[µ]
1 )[β] is unit in A(i1, i2, µ).

�
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Proposition 7.

Let i1, i2, i3 ≥ 0 be integers, let µ, α, β ∈ K. Assume the conditions
i1 ≥ pi2, ν(℘(µ)) ≥ i2 − pi1, ν(℘(α) + ℘(µ)β) ≥ i3 − pi1,
ν(℘(β)) ≥ i3 − pi2, ν(µ− βp) ≥ pi3 − i1 and i2 ≥ pi3. Then
A = A(i1, i2, i3, µ, α, β) is an R-order in K [Cp3 ].

Proof. We have(
g3g

[α]
1 (g2g

[µ]
1 )[β] − 1

πi3

)p

=
g2g

[βp ]
1 − 1

πpi3
.

By [EU17, Proposition 2.2], the condition ν(µ− βp) ≥ pi3 − i1
implies that

g
[µ]
1 − g

[βp ]
1

πpi3
∈ A(i1).
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Ultimately, we obtain

g2g
[βp ]
1 − 1

πpi3
∈ A(i1, i2, µ),

since i2 ≥ pi3.

Thus an R-basis for A(i1, i2, i3, µ, α, β) is
(
g1 − 1

πi1

)a
(
g2g

[µ]
1 − 1

πi2

)b(
g3g

[α]
1 (g2g

[µ]
1 )[β] − 1

πi3

)c
 ,

0 ≤ a, b, c ≤ p − 1.
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By Lemma 6, g
[α]
1 (g2g

[µ]
1 )[β] is a unit in A(i1, i2, µ).

Thus,

K ⊗R A(i1, i2, i3, µ, α, β) ∼= K [Cp3 ],

which shows that A(i1, i2, i3, µ, α, β) is an R-order in K [Cp3 ].
�
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Proposition 8.

Let i1, i2, i3 ≥ 0 be integers, let µ, α, β ∈ K. Assume the conditions
i1 ≥ pi2, ν(℘(µ)) ≥ i2 − pi1, ν(℘(α) + ℘(µ)β) ≥ i3 − pi1,
ν(℘(β)) ≥ i3 − pi2, ν(µ− βp) ≥ pi3 − i1 and i2 ≥ pi3. Then
A = A(i1, i2, i3, µ, α, β) is an R-Hopf order in K [Cp3 ].

Proof. In view of Proposition 7, we only need to check that the
Hopf maps of K [Cp3 ] restricted to A, endow A with the structure
of an R-Hopf algebra.

We easily have ε(A) ⊆ R.

We have to work a bit harder to show that

∆(A) ⊆ A⊗ A.
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Let
Q(x , y) = ((x + y + xy)p − xp − yp − (xy)p)/p.

Then Q(x , y) ∈ (x , y)p ⊆ Z[x , y ] with Q(x , y)2 ∈ (xp, yp).

Let
X = (g1 − 1)/πi1 ⊗ 1, Y = 1⊗ (g1 − 1)/πi1 ,

T = (g2 − 1)⊗ 1, V = 1⊗ (g2 − 1).

Let

D = (1 + T )(1 + V )(1 + πi1X )[µ](1 + πi1Y )[µ].
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By [Un22, Lemma 4.3]

((1 + T )(1 + V )((1 + πi1X )(1 + πi1Y ))[µ])[β]

= ((1 + T )(1 + V )(1 + πi1X )[µ](1 + πi1Y )[µ])[β]

· (1 + ℘(µ)βQ(πi1X , πi1Y ))

· (1 + ℘(β)Q(D − 1, ℘(µ)Q(πi1X , πi1Y )))

+ f (πi1X , πi1Y ,T ,V , µ, α)πi1X + g(πi1X , πi1Y ,T ,V , µ, α)πi1Y

for polynomials f , g ∈ Fp[X ,Y ,T ,V , µ, β].

We have

+ f (πi1X , πi1Y ,T ,V , µ, α)πi1X + g(πi1X , πi1Y ,T ,V , µ, α)πi1Y
∈ πi3(A(i1, i2, µ)⊗ A(i1, i2, µ)).
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Ultimately, we obtain

∆(g3g
[α]
1 (g2g

[µ]
1 )[β] − 1) ∈ πi3A⊗ A.

Thus

∆(A) ⊆ A⊗ A.

Finally, S(A) ⊆ A since the coinverse map is

m(I⊗m)(I⊗I⊗m) · · · (I p3−3⊗m)(I p
3−3⊗∆) · · · (I⊗I⊗∆)(I⊗∆)∆,

where m : A⊗ A→ A is multiplication in A(i1, i2, µ).
�
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4. From Characteristic p to characteristic 0

Let p be a prime number, let K be a field of characteristic p that
is complete with respect to a discrete valuation

ν : K → Z ∪ {∞}.

Let R denote the valuation ring with π the uniformizing parameter.

Let Cp = 〈g1〉 denote the cyclic group of order p.

Let i1 ≥ 0 be an integer. Then

A(i1) = R

[
g1 − 1

πi1

]
is an R-Hopf order in K [Cp].
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Proposition 9.

Let i1 ≥ 0 be the integer as before. Let Qp denote the field of
p-adic rationals. Then there exists a finite field extension L/Qp

with valuation ring OL and uniformizing parameter λ, for which

A(i1) = OL

[
g1 − 1

λi1

]
is an OL-Hopf order in L[Cp].

Proof. Choose r ≥ 1 so that

pr−1 ≥ i1 ≥ 0,

and let L = Qp(ζpr ), λ = ζpr − 1,
Then ν(p) = e = pr−1(p − 1), ν(ζp − 1) = e ′ = e/(p − 1) = pr−1.

Thus A(i1) is a (characteristic 0) OL-Hopf order in L[Cp].
�
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Next, let i1, i2 ≥ 0 be integers with i1 ≥ pi2. Assume that p | i2.

Let t ≥ 0 be so that

0 ≥ t + i2/p − i1.

Let
µ = πt+i2/p−i1 ∈ K .

Then ν(℘(µ)) ≥ i2 − pi1.

31 / 44



Let Cp2 = 〈g1, g2〉, gp
1 = 1, gp

2 = g1 denote the cyclic group of
order p2.

By Proposition 5

A(i1, i2, µ) = R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
is an R-Hopf order in K [Cp2 ].
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Now, let r ≥ 1 be so that

pr−1 ≥ i1 + i2.

Let L = Qp(ζpr ), with valuation ring OL and uniformizing
parameter λ = ζpr − 1.

Let
α = λt+i2/p−i1 ∈ L.

Proposition 10.

A(i1, i2, α) = OL

[
g1 − 1

λi1
,
g2g

[α]
1 − 1

λi2

]
is an OL-Hopf order in L[Cp2 ].
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Proof. Let

u = ζ
[α]
p =

p−1∑
m=0

(
α

m

)
(ζp − 1)m.

Then

ν(1− u) ≥ pr−1 + ν(α) ≥ i ′1 + i2/p,

i ′1 = pr−1 − i1.

Since pr−1 ≥ i1 + i2,

i ′1 + i2/p ≥ i ′1/p + i2.
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So, by a well-known result,

OL

[
g1 − 1

λi1
,
g2au − 1

λi2

]
.

is an OL-Hopf order in L[Cp2 ].

Here, au =
∑p−1

m=0 u
mem is the familiar Greither quantity.

Now by a “translation” result of Elder and U. [EU23],

OL

[
g1 − 1

λi1
,
g2g

[α]
1 − 1

λi2

]
= OL

[
g1 − 1

λi1
,
g2au − 1

λi2

]
.

�
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Note: We can write au as

au = G (g1, u),

where

G (x , y) =
1

p

p−1∑
m=0

p−1∑
n=0

ζ−mn
p xmyn

is the Gauss sum.
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5: From Characteristic 0 to characteristic p

Let L be a finite field extension of Qp. Assume that ζp3 ∈ L.

We have the following result from [Un08, Theorem 3.2]:

Theorem 11 (U).

Let i1, i2, i3 ≥ 0 be integers and let u, v ,w be units of OL.

Suppose that

(i) ν(1− u) ≥ i ′1 + i2/p

(ii) ν(1− w) ≥ i ′2 + i3/p

(iii) ν(vp − G (u−p,w)) ≥ pi ′1 + i3,

(iv) ν(1− v) ≥ i ′1 + (i3/p
2),
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(v) i1 ≥ pi2,

(vi) i ′2 > pi ′1,

(vii) i ′3 ≥ p2i ′1,

(viii) i2 ≥ p2i3,

(ix) e ′ ≥ i1 + i2 + i3.

Then

OL

[
g1 − 1

λi1
,
g2G (g1, u)− 1

λi2
,
g3G (g1, v)G (g2G (g1, u),w)− 1

λi3

]
is an (iterated Gauss sum) OL-Hopf order in L[Cp3 ].

�
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Let

µ =
1

1− ζp

p−1∑
m=1

(1− u)m

m
, β =

1

1− ζp

p−1∑
m=1

(1− w)m

m
,

α =
1

1− ζp

p−1∑
m=1

(1− v)m

m
.

Note: these quantities are truncated logarithms.

Then conditions (i)-(ix) yield the conditions:

ν(℘(µ)) ≥ i2 − pi1,
ν(℘(β)) ≥ i3 − pi2,
ν(℘(α) + ℘(µ)β) ≥ i3 − pi1,
ν(µ− βp) ≥ pi3 − i1.
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Thus by Proposition 8,

R

[
g1 − 1

πi1
,
g2g

[µ′]
1 − 1

πi2
,
g3g

[α′]
1 (g2g

[µ′]
1 )[β

′] − 1

πi3

]

is an R-Hopf order in K [Cp3 ]. where µ′, β′, α′ are appropriately
chosen elements in K . (K has characteristic p.)
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Characteristic 0 is special

Let L = Qp(ζp2), G = Cp2 .

Then the dual of the Hopf order OL[Cp2 ] is the OL-Hopf order in
L[Cp2 ] of the form

OL

[
g1 − 1

λe′
,
g2aw − 1

λe′

]
with w = ζ−1

p2
, e ′ = ν(p)/(p − 1) = p [UC06, Theorem 1.2].

Let

ω =
1

1− ζp

p−1∑
m=1

(1− w)m

m
.
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Then

OL

[
g1 − 1

λe′
,
g2aw − 1

λe′

]
= OL

[
g1 − 1

λe′
,
g2g

[ω]
1 − 1

λe′

]
Yet

OL

[
g1 − 1

λe′
,
g2g

[ω]
1 − 1

λe′

]
cannot correspond to a Hopf algebra in characteristic p since
pe ′ 6≤ e ′.
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6: What’s next: iterated Gauss sums

The plan is to recast the results of [Un08] using the methods of
[EU17] and [Un22], adapted to characteristic 0.

From [Ch00, Proposition (31.10)], we have

Proposition 12 (Childs).

Suppose pi1 ≥ i2, let u ∈ U(OL) with ν(up − 1) ≥ pi ′1 + i2. Then

∆(G (g1, u)) = G (g1 ⊗ g1, u) ≡ G (g1, u)⊗ G (g1, u)

modulo λi2A(i1)⊗ A(i1).
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Childs’ result can be generalized to iterated Gauss sums.

Proposition 13.

Let u,w ∈ U(OL) with ν(G (up,w)− 1) ≥ pi ′1 + i3. Then

∆(G (g2G (g1, u),w))

= G ((g2 ⊗ g2)G (g1 ⊗ g1, u),w) ≡ G (g2G (g1, u)⊗ g2G (g1, u),w)

modulo λi3A(i1, i2, u)⊗ A(i1, i2, u).

Proposition 13 is the first step in a simplified construction of
iterated Gauss sum Hopf orders in K [Cp3 ].
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