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Introduction

Let p be a prime number and let K be a field of characteristic p
that is complete with respect to a discrete valuation

v:K—ZU{0}
with uniformizing parameter .
The valuation ring of K is
R={xe K |v(x)>0}
with unique maximal ideal
p={xeR|v(x)=>1)

and units
U(R) = {x € R| v(x) =0}.
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Let G denote a finite abstract group.

This talk concerns the construction of Hopf orders in K[G] in the
following cases:

1. G is the elementary abelian group of order p”,

C,? = <g1ag2a cee 7gn>a

gl =11<i<n,
2. G is the cyclic group of order p”,
Cp" = <g17g27 cee 7gn> = <gn>

with gf =1, gip =g_-1,2<i<n.
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Much more is known in the case that G is elementary abelian. In
fact, Hopf orders in K[C]] have been completely classified for
n=1,2,3[TO70], [EU17], [Un22].

Moreover, on the dual side, A. Koch has given a complete
classification of Hopf orders in K[C[]*, n > 1 [Kol7].

The situation is less clear in the case that G is cyclic, and aside
from the n = 1 case, the classification is not complete.

A strategy has arisen in view of the progress in the elementary
abeilian case: the methods used to construct Hopf orders in K[C]]

can be adapted to construct collections of Hopf orders in K[Cpn].

We begin with a review of the classification results in the
elementary abelian case.
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Hopf orders in K[C]], n=1,2,3

Theorem 1 (Tate-Oort).

Let g1 be a chosen generator for C, and let H be an arbitrary
R-Hopf order in K[Cp). Then H is of the form

E(i) = R [gl — 1}

o
for some integer i > Q.
Proof. See [EU17, Theorem 2.3].
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To classify Hopf orders in K[Cg], we need some preliminary
notation.

Let p(x) = xP — x for x € K.

For x,y, let xI1 denote the truncated exponential, defined as

X = pz_l (Zq) (x — 1),

m=0

where (7) is the generalized binomial coefficient

<)/> —y(y 1)y —2)-(y — m+1)/m!

m

The truncated exponential was introduced by Elder in [EI09].
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A classification of R-Hopf orders in K[C3] can now be given as
follows.

Theorem 2.
Let g1, 8> be a chosen basis for C2, and let H be an arbitrary
R-Hopf order in K[C2]. Then H can be written in the form

E(il’ ’.27:“) =R

w7 i

g1 og - 1]
for integers i1, i» > 0, where p is an element of K that satisfies
v(p(u)) = iz — pi.

Proof. See [EU17, Section 4].
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Extending Theorem 2, this author was able to give a classification
in the n = 3 case.

Theorem 3.
Let g1, g2, 83 be a chosen basis for C3 and let H be an arbitrary
R-Hopf order in K[C3] Then H can be written in the form

[u] _1 g3g1[ ](gzgllu])[ﬁ] _1

) 7_[_,3

g1—1 ggy
i

l;(ila’év Eg,[t,(l,/?) =

7ri2

for integers i1, Ir, i3 > 0, where u, o, B are elements of K that
satisfy v(p(p)) = i2 — pir, v(p(a) + o(1)B) = i3 — pir and
v(p(B)) = i3 — piz.

Proof. See [Un22, Proposition 5.4]. Note: Hopf orders of this
type first appeared in a paper of Byott and Elder [BE18].
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2. The Cyclic case: Hopf orders in K[C]

Now, we consider the cyclic cases.
Note: The n =1 case has already been covered:

The cyclic group C, = (g1) coincides with the elementary abelian
group Cp = (g1).

As shown in Theorem 1, every Hopf order in K[C,] is a Tate/Oort
Hopf order, which we now write as

Ai) = R [glf ]

mh

for some integer i; > 0.
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We consider the cyclic n = 2 case: the construction of Hopf orders
in K[Cpe].

For n = 2, the strategy, as mentioned, is to convert the Hopf order
in K[C?] to a Hopf order in K[C].

We replace the elementary abelian group of order p?,

C;g: <g17g2>7 g]l_J:]v gf:]_’

with the cyclic group of order p?,

Co= (g1, &)= (), & =1, & =a.
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Let C2 = (g1,82) = (g2) denote the cyclic group of order p%;
g =18 =g.

Let i1, /> > 0 be integers and let p be an element of K. Let

i 2

_ [N] -1
Ain i 1) = R [gl 1 &8l ]

be a truncated exponential algebra over R.

We find conditions under which A(i1, ip, 1) is an R-Hopf order in
K[Cp2].
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Proposition 4.

Suppose that v(p(p)) > io — piy and iy > pia. Then A(i, iz, 1) is

an R-order in K[Cp].

Proof. Since

2

P
(et} st ey

an R-basis for A(i, 2, 1) is

g -1\ (@e -1 ’
< . ) L , 0<a,b<p—-1
mh T2

Moreover, as shown in [EU17, Proposition 3.4], glM is a unit in
A(i).
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Thus,

K ®r A(i1, i2, 1) = K[Cpe],
which shows that A(i1, iz, it) is an R-order in K[C].

14/ 44



Proposition 5.
Suppose that v(p(p)) > i — piy and iy > pia. Then A(i, ia, 11) is
an R-Hopf order in K[C].

Proof. In view of Proposition 4, we only need to check that the
Hopf maps of K[C,] restricted to A(i1, i2, 1), endow A(iy, iz, 1)
with the structure of an R-Hopf algebra.

But we easily have e(A(i, i, 1)) € R. Moreover,

A(A(ir, 2, 1)) C Ay i, p) @ A(in, 2, 1)

follow precisely as in the elementary abelian case, see [EU17,
Proposition 3.4].
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Finally, S(A(i1, i2, 1)) € A(i1, 2, pt) since the coinverse map is
m(lem)(I@l@m)--- (1P 3am)(1P°3:A) - - (1ol A)(IRA)A,

where m : A(i, i, 1) @ A(i, ia, pt) — A(i1, i, 1) denotes
multiplication in A(i1, i2, ).
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3. The Cyclic case: Hopf orders in K[C3]

Let Cp3 = (g1,82,83) = (g3) denote the cyclic group of order p3:
gl=128 =g 8 =2

Let i1, ip, i3 > 0 be integers with i1 > pih. Let u be an element of
K that satisfies v(p(i)) > i — pir. Let «, 5 be elements of K,
and let A= A(il, ir, i3, B,,u) =
1 Wl 1 [a]( [N])[,B] -1
R &1 828, 8381 (828
T T g i3

be a truncated exponential algebra over R.
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By Proposition 5,

(1]
~1 —1

o i2
is an R-Hopf order in K[C].

We also note that A(i1, ip, t) is a local ring [Ch00, (29.1)
Proposition], [Ch00, (21.3) Corollary].
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We want to find conditions so that A is an R-Hopf order in K[C].

Lemma 6.
Assume the conditions v(p(a) + p(un)B) > i3 — pit,

v(p(B)) > i3 — pir. Then g{a] (gggl[“])[ﬁl is a unit in A(i1, iz, 11).
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Proof. By [EU17, (2)], g[a] ] — 1. As shown in [Un22, Lemma
4.2], g e A(ir, ir, ). Thus gl is a unit in A(ir, ia, ).

By [EU17, (2)],
(2261 gog! ) = 1+ (gl — 1, 8) (&1 — 1),
for some polynomial f(x,y) € Fy[x, y].

Now the condition v(p(3)) > i3 — pi» yields v(3) > —ia, which
implies that

f(gzgl[“] —1,8)(g1 — 1) € A(i, i, ).

In fact,
f(g2g1m] —1,8)(g1 — 1) € ker(e).
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Thus f(gzgl[“] —1,8)(g1 — 1) is contained in the unique maximal

ideal of A(i1, iz, 1t).
And so, 1 + f(gzgl[”] —1,8)(g1 — 1) is a unit of A(i1, i, ).

Let ¢ denote its inverse. Then

(281" (28" = 1.
Using the method of [Un22, Lemma 4.2], we obtain

(gggl[“])[iﬁ] € A(i1, i, ). So, (ggg{“])[ﬁ] is unit in A(i1, i2, 1t).
U
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Proposition 7.

Let i1, ir, i3 > QO be integers, let p, o, B € K. Assume the conditions

i = piz, v(p(p)) = i2 = pir, v(p(a) + p(1)B) = i3 — pit,
v(p(B)) > i3 — pir, v( — BP) > pis — iy and ix > pi3. Then
A = A(i1, 2, 13, i1, @, B) is an R-order in K[Cp3].

Proof. We have

o p
(gsgll {(gagt™) - 1) _ e -1

i3 7'[‘Pi3

By [EU17, Proposition 2.2], the condition v(u — 5P) > piz — iy
implies that

p
gl — g
71'Pi3

€ A(Il)
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Ultimately, we obtain

P
gzgl[ﬁ I-1

71-pi3 S A(i17i27u)7

since ip > pis.

Thus an R-basis for A(i1, i, i3, i1, a, 3) is

a b o c
81— gzgl[“] -1 g3g1[ ](gzgl[“])[ﬁ] -1
h i i ’

0<abc<p-1
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By Lemma 6, glla](gzg{“])[ﬁl is a unit in A(i, i, p1).

Thus,

K ®r A(ilv 2, 13, L, a»ﬁ) = K[Cp3]a

which shows that A(i, iz, i3, j1, v, 3) is an R-order in K[Cp3].
O
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Proposition 8.

Let ih, ip, i3 > 0 be integers, let u, o, B € K. Assume the conditions
i = piz, V(p(p)) 2 i2 — pin, v(p(a) + p(p)B) = iz — pi1,

v(p(B)) > i3 — pia, v(u— BP) > pis — iy and i, > pi3. Then

A = A(i1, i, i3, pt, @, B) is an R-Hopf order in K[Cp3].

Proof. In view of Proposition 7, we only need to check that the
Hopf maps of K[Cs] restricted to A, endow A with the structure
of an R-Hopf algebra.

We easily have ¢(A) C R.

We have to work a bit harder to show that

A(A)CA® A.
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Let
Qlx,y) = ((x +y +xy)P —xP — yP — (xy)?)/p.
Then Q(x,y) € (x,y)P C Z[x, y] with Q(x,y)? € (xP,yP).

Let
X=(g-1)/r"®1l, Y=1x(g—-1)/7",

T=(@-1)®l, V=1&(g-1).

Let

D=1+ T)1+ V)14 72 X)H (14 7ry),
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By [Un22, Lemma 4.3]

(14 T + V)((1 4 72X)(1 4 7 Y)) )]
= (14 7)1+ V)A +72X)H(1 4 it y)lhol
(L + ()BT X, 1Y)
(14 p(B)Q(D — 1, p(u) Q(x" X, 7 Y)))
+ (e X, 7Y, T, V, p,)nt X + g(ni X, 7Y, T, V, u,a)r Y
for polynomials f,g € Fp[X, Y, T, V, 1, 3.

We have

+ f(wilX,ﬂil Y, T,V,u,a)t X + g(x1 X, 70Y, T, V, p,a)nY
€ 7T’3(A(il> i27 M) ® A(ila i2> :u))
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Ultimately, we obtain

Mgl (ge )Pl 1) e r2A® A
Thus

A(A) CA® A
Finally, S(A) C A since the coinverse map is
m(l@m)(Iol@m)--- (17 3@m)(IP 31A) - (IR A)(IRA)A,

where m: A® A — A is multiplication in A(i1, i2, it).
[l
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4. From Characteristic p to characteristic 0

Let p be a prime number, let K be a field of characteristic p that
is complete with respect to a discrete valuation

v: K—ZU{oo}.
Let R denote the valuation ring with 7 the uniformizing parameter.

Let C, = (g1) denote the cyclic group of order p.

Let /1 > 0 be an integer. Then

A(i) = R [gl — ]

h

is an R-Hopf order in K[C,].
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Proposition 9.

Let iy > 0 be the integer as before. Let Q, denote the field of
p-adic rationals. Then there exists a finite field extension L/Q,
with valuation ring O and uniformizing parameter A, for which

A1) = O [gl)\,: 1]

is an O -Hopf order in L[Cp).

Proof. Choose r > 1 so that
pt>i >0

and let L = Qp(Cpr), A =C(pr — 1,
Thenv(p)=e=p"H(p—1), v((~1) =€ =¢/(p—1)=p"

Thus A(i1) is a (characteristic 0) O-Hopf order in L[Cp].
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Next, let i1, o > 0 be integers with i1 > pi>
Let t > 0 be so that
0> t+i2/P—i1.

Let

= ptti2/p=it = K.

Then v(p(p)) > i — pir.

. Assume that p | h.
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Let C,» = (g1,82), & =1, g5 = g1 denote the cyclic group of
order p°.

By Proposition 5

(1]
-1 -1
A(i17i2a:u) =R [gl i 7g2g1 ; ]

wh 2

is an R-Hopf order in K[C].
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Now, let r > 1 be so that
r—1 : :
p =itk

Let L = Qp(Cpr), with valuation ring O; and uniformizing
parameter A = (pr — 1.

Let
o= )\t+i2/P—i1 c L.

Proposition 10.

A(I.]_7I.2,Oé) = OL P \2

g -1 gl - 1]

is an Op-Hopf order in L[Cp].
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Proof. Let

m=0
Then
v(l—u)>pt+u(a)> i+ i/p,
ii=p1-i

Since p"~1 > i1 + i,

h+i/p>i/p+i
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So, by a well-known result,

g—1 ga,—1
o[ 1 1]

is an O;-Hopf order in L[Cp2].

p—

Here, a, = m:10 uen, is the familiar Greither quantity.

Now by a “translation” result of Elder and U. [EU23],

OL )\il ) )\fz )\il ) >\I2

g—1 gzglla]—ll _ 0 {gll g23u1:|
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Note: We can write a, as

where
G(x,y) =

is the Gauss sum.
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5: From Characteristic 0 to characteristic p

Let L be a finite field extension of Q. Assume that (3 € L.

We have the following result from [Un08, Theorem 3.2]:

Theorem 11 (U).
Let i1, i, i3 > 0 be integers and let u, v, w be units of O;.
Suppose that

()v(l—u)>ii+ifp
(i) v(l —w) > i+ i3/p
(iii) v(vP = G(u™P, w)) = pij + is,

(iv) v(1 = v) > if + (i3/p?),
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(v) ih > pid,

(vi) iy > pi,

(vii) iy > pii,

(viii) iy > p?i3,

(ix) € > i+ i+ is.
Then

gi—1 gG(g,u)—1 g3G(g1,v)G(gG(gL,u),w)—1

OL )\il ) )\12 )\13

is an (iterated Gauss sum) Or-Hopf order in L[C3].
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Let

1-¢p m

m=1

R = ) L B Bty § R L
H_l_Cpmz_:l m ) ﬁ

1 -
:l—CpZ m

m=1

(07

Note: these quantities are truncated logarithms.

Then conditions (i)-(ix) yield the conditions:
v(p(p)) = i — pit,

v(p(B)) = i3 — piz,

v(p(a) + p(p)B) = i3 — pi,

v(p— BP) > piz — i1
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Thus by Proposition 8,

pla—1 28’1 1 gl (ggl B — 1

i ﬂ-ig i3

is an R-Hopf order in K[C,3]. where 1/, 3, a’ are appropriately
chosen elements in K. (K has characteristic p.)
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Characteristic 0 is special

Let L = QP(CP2), G= sz.

Then the dual of the Hopf order O;[Cp2] is the O -Hopf order in
L[C,2] of the form

81— 1 82aw — 1
OL |: Ae/ ) )\e/ :|

with w = ¢3!, ¢ = v(p)/(p — 1) = p [UCO6, Theorem 1.2].

p2 1
Let

1
= 1—W

M

P m=1
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Then

OL |:g1_1,g2aw_1:| :OL

)\e/ )\e/ Ae/ ) )\e/

g -1 ggl - 1]

OL )\e/ ) Ael

g—1 gell- 1]

cannot correspond to a Hopf algebra in characteristic p since
pe’ £ €.
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6: What's next: iterated Gauss sums

The plan is to recast the results of [Un08] using the methods of
[EU17] and [Un22], adapted to characteristic 0.

From [Ch0O, Proposition (31.10)], we have

Proposition 12 (Childs).
Suppose piy > i», let u € U(OL) with v(uP — 1) > pij + ir. Then

A(G(g1,u)) = G(g1 ® g1,u) = G(g1,u) ® G(g1,u)

modulo A2 A(i1) @ A(iy).
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Childs' result can be generalized to iterated Gauss sums.

Proposition 13.
Let u,w € U(Oy) with v(G(uP,w) — 1) > pij + i3. Then

A(G(g26G(g1,u),w))
= G((52® £2)G(g1 ® g1,u), w) = G(82G (g1, u) ® g2G(g1, u), w)

modulo N3 A(iy, ip, u) ® A(ir, ip, u).

Proposition 13 is the first step in a simplified construction of
iterated Gauss sum Hopf orders in K[Cp3].

44 /44



References

[
[

[BE18] N. Byott, G. G. Elder, Sufficient conditions for large
Galois scaffolds, J. Num. Theory, 182, 2018, 95-130.

[Ch0O] L. N. Childs, Taming Wild Extensions: Hopf Algebras
and Local Galois Module Theory, American Mathematical
Society, Mathematical Surveys and Monographs 80, 2000.

[EI09] G. G. Elder, Galois scaffolding in one-dimensional
elementary abelian extensions, Proc. Amer. Math. Soc.,
137(4), (2009), 1193-1203.

[EU17] G. G. Elder, R. G. Underwood, Finite group scheme
extensions, and Hopf orders in KCg over a characteristic p
discrete valuation ring, New York J. Math., 23, 2017, 11-309.

[EU23] G. G. Elder, R. G. Underwood, personal
communication.

[Kol7] A. Koch, Primitively generated Hopf orders in
characteristic p, Comm. Alg., 45(6), 2017,.2673-2689.

44 /44



T T A 1 N

[TO70] J. Tate, F. Oort, Group schemes of prime order, Ann.

Sci. Ec. Norm. Sup., 3, (1970), 1-21.
[UC06] R. G. Underwood, L. N. Childs, Duality for Hopf

orders, Trans. Amer. Math. Soc., 358(3), (2006), 1117-1163.

[Un08] R. G. Underwood, Realizable Hopf orders in KCp3, J.
Algebra, 319, (2008), 4426-4455.

[Un22] R. Underwood, Hopf orders in K[CJ] in characteristic
p, J. Algebra, 595, (2022), 523-550.

44 /44



